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Figure S1: Schematic representation of protein complex scoring. In this model, the complex score and p-
value calculation of a single complex is shown. First, the input data (without preselecting hits) is mapped
to the protein complex. To calculate the interquartile mean (IQM), complex members are ordered based
on the protein-score, and the mean value between first (Q1) and third (Q3) quartile is calculated. The p-
value corresponding to the IQM is calculated by comparing it to the distribution of random IQM scores

calculated based on the 1000 random complexes. Random complexes are generated either based on the

input data or based on the complex resource, depending on the user specification.
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Figure S2: Snapshots of the COMPLEAT Web interface. (A) Input page for COMPLEAT with options to

upload input file, choose organism and set advance parameters. (B) The COMPLEAT result page includes
an interactive scatterplot where each point on the scatter plot represents a single complex whose
position corresponds to the score. Size reflects the relative complex size, and color corresponds to the p-
value. The user has the option to change the p-value threshold using p-value adjustment sliders. When a
user selects the complex of interest from the scatter-plot, the network illustrations of the complexes are
displayed on the Web Cytoscape panel (right panel of the same page). The node color in the network
corresponds to the user input values, and the color-code ranges from blue to red (blue corresponds to
the lowest value, and red is the maximum value). Note that the gray node represents a missing value,

meaning that a particular gene or protein is present in the complex but missing in the user input data.



There are two types of edges: Solid edges correspond to known PPIs. Broken edges are interologs
(proteins for which the ortholog gene pairs in another species are known to physically interact). The user
has the options to zoom in or out in the network and save the network images. (C) Additional
information about complexes or proteins can be obtained by clicking nodes or complexes. For example,
clicking a node takes the user to the corresponding gene or protein database. Clicking a complex
provides annotation regarding the complex, such as the original source, purification method or
prediction algorithm, PubMed references (if available), sub-cellular locations and co-cited literature (see

Materials and Methods for details).
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Figure S3: Complex enrichment results of baseline and EGF stimulus. (A) Distribution of complex scores
from baseline data. Significant complexes are highlighted in red (p-value < 0.01 and score 2 1 or < -1). (B)
Complex score distribution from EGF stimulus data. Significant complexes are shown in red (p-value <

0.01 and the score > 1.5 or <-1.5). The point size is proportional to the complex size.
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Figure S4: Baseline compared with EGF stimulus common complexes. Non-redundant complexes

corresponding to table S16 are shown. Each complex is represented twice; the complex on the left

corresponds to baseline, and that to the right represents the stimulus condition. The network picture

was generated using Cytoscape software (www.cytoscape.org/). The node color ranges from dark blue

to dark red, where the lowest value correspond to dark blue (negative Z-score) and highest score

corresponds to dark red (positive z-scores). Solid edges correspond to known PPl and broken edges

correspond to interolog.
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Figure S5: Baseline compared with EGF stimulus dynamic complexes: opposing effects. Non-redundant

complexes corresponding to table S17 are shown. Node color and edge style are as described in figure

S4.
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Figure S6: Baseline compared with EGF stimulus: baseline-specific dynamic complexes. Non-redundant

complexes corresponding to table S17 are shown. Node color and edge style are as described in figure

S4.
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Figure S7: Baseline compared with EGF stimulus: stimulus-specific dynamic complexes. Non-redundant

complexes corresponding to table S17 are shown. Node color and edge style are as described in figure

S4.
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Figure S9: Baseline compared with insulin stimulus: common complexes. Non-redundant complexes
corresponding to table S18 are shown. Node color and edge style are as described in figure S4.
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Figure S10: Baseline compared with insulin stimulus: baseline-specific dynamic complexes. Non-
redundant complexes corresponding to table S19 are shown. Node color and edge style are as described
in figure S4.
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Table S1: Compilation of literature protein complexes for humans, Drosophila, and yeast. Complex

source are either from literature curation (LC) or high confidence complexes reported in literature based

on high-throughput MS-pull down data (HT). Source organism: the organism in which the protein

complex is reported in the database or publication. Ortholog mapping: the protein complexes were

mapped to other organism using DIOPT (17), an ortholog mapping tool.

Source
Database/dataset Source . Ortholog mapping Human Drosophila Yeast
organism
Human, Human, Drosophila,
CORUM (15) LC 2363 2162 1395
mouse yeast
Human, Drosophila
PINdb (13) LC Human, yeast 286 280 276
and yeast
LC Yeast Human, Drosophila 358 346 408
CYC2008 (14)
HT Yeast Human, Drosophila 343 333 400
Human,
Gene Ontology (2) LC Drosophila, No mapping 282 146 304
yeast
Drosophila AP-MS
pull-down HT Drosophila Human, yeast 511 556 331
complexes (16)
KEGG module (3) LC Human Drosophila, yeast 210 196 193
. . Human,
Signalink (32) LC . yeast 14 14 14
Drosophila
FlyReactome (52) LC Drosophila Human, yeast 9 9 9
All literature
3638 3077 2173

complex




Table S2: PPI data sets used to construct integrated PPl networks for humans, Drosophila, and yeast.
Name of the data set, publication reference, URL, number of PPls and proteins in the data set are given.
All the PPl datasets are downloaded from the corresponding Website and the database version
corresponds to the March 2012 release. For humans and yeast, the protein or gene identifiers are
mapped to NCBI Entrez gene identifier. In case of Drosophila, the gene or protein identifiers are mapped

to Flybase gene identifier.

Database/datasets Human Drosophila Y east
PPls Proteins PPls Proteins PPls Proteins
BioGrid (33) 59226 12529 23916 7305 60062 5374

http://thebiogrid.org/

IntAct (53) 40368 9468 25385 7530 76147 5555

http://www.ebi.ac.uk/intact/

DIP (54) 2860 1855 19753 6584 22028 4675

http://dip.doe-
mbi.ucla.edu/dip/Main.cgi

MINT (55) 19048 6315 17336 5917 27680 5104

http://cbm.bio.uniroma2.it/mint/

HPRD (35) 39172 9670 - - - -
http:/www.hprd.org/

DrolD (36) - - 87070 9068 - -
http://www.droidb.org/

Drosophila AP-MS dataset (16) - - 10964 2296 - -
MasterNet 108059 14495 98500 9373 118603 5729

(integrated network)




Table S3: Predicted protein complexes for humans, Drosophila, and yeast. CFinder (38) was applied for
humans, Drosophila and yeast filtered PPl networks. NetworkBLAST (19) was applied to identify protein

complexes by aligning human and Drosophila, human and yeast, and Drosophila and yeast PPI networks.

Prediction source Human Drosophila Y east

Complexes Proteins Complexes Proteins Complexes Proteins

CFinder / Human PPI 713 2046 - - - -
CFinder /Drosophila PPI - - 433 1419 - -
CFinder / Yeast PPI - - - - 423 1465
NetworkBLAST / Human vs. 1722 2665 1722 2638 - -

Drosophila PPI

NetworkBLAST / Human vs. 3820 4369 - - 3820 2712
Yeast PPI
NetworkBLAST / - - 1532 2279 1532 1840

Drosophila vs. Yeast PPI

All predicted complexes 6251 6334 3639 3933 5551 3366




Table S4: Redundancy in the protein complex resource. A protein complex is defined as redundant if it is
a subset, superset or shares 80% of proteins with the other complexes in the resource. Non-redundant
complexes are constructed at 80%, meaning that no two complexes share more than 80% similarity. This
table corresponds to Figure 2B.

Complexes Human Drosophila Y east
All complexes 9881 6703 7713
Non-redundant 5164 3399 3183

Redundant complexes 4717 3304 4530




Table S5: Overlap of the literature and predicted complexes at the protein level.

Organism Literature specific Predicted specific Common Total
Proteins Percentage Proteins Percentage Proteins Percentage Proteins

Human 2959 31.8% 1769 19% 4565 49.1% 9293

Drosophila 2603 39.8% 917 14% 3016 46.1% 6536

Y east 628 15.7% 714 17.9% 2652 66.4% 3994




Table S6: Proteome covered by the protein complex resources. This table corresponds to the Figure 2E.

Complexes Human Drosophila Y east
Covered Total Covered Total Covered Total

All proteins 9293 20402 6536 13776 3994 5882

Conserved 5161 6203 4009 5249 3184 3551

proteins




Table S7: Comparison of protein complexes with GO and KEGG with respect to co-citation. Significant
and total protein complexes, GO categories and KEGG pathways are shown. Significant protein
complexes, GO, and KEGG refers to significantly co-cited protein complexes compared to 1000 random

sets of the same size (p < 0.05). This table corresponds to Figure 2G.

Resource Human Drosophila Y east
Significant Total Significant  Total Significant ~ Total

Complexes 8757 9125 4545 5817 6708 7098

GO 5119 5994 2170 2457 1901 2036

KEGG 100 102 110 129 167 178




Table S8: Comparison of protein complexes with GO and KEGG with respect to protein colocalization.
Significant and total protein complexes, GO categories and KEGG pathways are shown. Significant
protein complexes, GO, and KEGG refers to significantly colocalized protein complexes compared to
1000 random sets of the same size (p < 0.05). This table corresponds to Figure 2H.

Resour ce Y east

Significant  Total

Complexes 3518 6682
GO 511 1976
KEGG 77 177

Table S9: Comparison of protein complexes with GO and KEGG with respect to gene coexpression.
Significant and total protein complexes, GO categories and KEGG pathways are shown. Significant
protein complexes, GO, and KEGG refers to significantly coexpressed genes compared to 1000 random

sets of the same size (p < 0.05). This table corresponds to Figure 2H.

Resource Human Drosophila
Significant Total Significant  Total

Complexes 5364 8450 4015 5491

GO 2082 6293 1787 2628

KEGG 126 175 159 189




Table S10: Annotation of the protein complex resource. Literature annotation corresponds to the
annotation from the source database. GO enrichment was performed if the complex was predicted or if
the annotation was available from the literature. Unknown complexes are new complexes for which no

functional theme is associated. This table corresponds to Figure 2I.

Complexes Human Drosophila Y east
Literature annotation 3784 3372 2838
GO enrichment 5721 2614 4613
Unknown 376 717 262

Total 0881 6703 7713




Table S11: Gene or protein input identifiers supported by the COMPLEAT.

Identifier type Human Drosophila Yeast

Symbol Entrez gene symbol Flybase gene symbol Entrez gene symbol
Gene identifier Entrez gene identifier Entrez gene identifier Entrez gene identifier
Protein identifier Uniprot identifier Uniprot identifier Uniprot identifier
Species specific Entrez gene identifier Flybase gene identifier Locus tag

identifier




Table S20: Dynamic phosphosites changing in response to insulin treatment. A systematic investigation
of insulin-induced phosphorylation using mass spectrometry and isobaric labeling of S2R+ cells identified
dynamic phosphorylation of Moira and MBD-R2 following a 10-minute insulin stimulus including the
Akt/RSK/S6 consensus motifs on Moira. This observation is consistent with human data, where Akt
phosphorylates the human ortholog of Moira (BAP155) (48). Method: Biological duplicates of two
conditions (no treatment or 10 minutes insulin treatment) were analyzed. Cells were lysed in 8 M urea,
75 mM NacCl, 50 mM Tris, pH 8.2, protease inhibitors cocktail (Roche), 1 mM NaF, 1 mM B-
glycerophosphate, 1 mM sodium orthovanadate, 10 mM sodium pyrophosphate, 1 mM PMSF. 1mg of
protein from each replicate was digested with trypsin (Promega) and processed as reported by
Dephoure and Gygi (56). 12 strong cation exchange (SCX) fractions were subjected to phosphopeptide
enrichment using IMAC-Select Affinity Gel (Sigma-Aldrich) and subsequent peptide desalting with
Stagetips (57). Samples were analyzed on an LTQ OrbiTrap Velos mass spectrometer (Thermo Fisher
Scientific) using a data-dependent Top10-MS2 method using (higher-energy collisional dissociation) HCD
for reporter ion quantitation. Peptide identification and filtering was performed following the methods
of Dephoure and Gygi (56) but using a composite Drosophila melanogaster protein database. Data
normalization and phosphosite localization was performed as previously described (58). The
phosphorylation sites indicated above for Moira and MBD-R2 were localized with near certainty using
the Ascore algorithm (Ascore > 19).

Fold change Akt/RSK/S6 Phosphosite

Protein Symbol Phosphosite Log2(10'/0%) consensus
; = motif (RXxS/T)
identifier
(47)
FBpp0082692 Mor PGKRKRS#PAVVHK 0.30 Yes Ser®”

FBpp0082081 MBD-R2 KRASTGS#LGGSSG 0.26 No Sef®






