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Figure S1. SGA screen for nucleolar defects in S. cerevisiae.

(A) Schematic overview of the SGA screen.

(B) Co-localization of Nop10-GFP and Nopl (antibody staining) in S. cerevisiae. Images are
representative of at least 5 independent biological replicates.

(C) Growth of the SGA query strain compared to wild-type at 30C and 37<C. Images are

representative of 3 independent biological replicates.

(D) Box plot illustrating the decrease of nucleolar size in stationary phase yeast cells compared
to cells in log phase.

(E) Bar plot representing 38 nucleolar fragmentation phenotypes of the essential gene collection
imaged and quantified at the permissive and non-permissive temperature. Values on the y-axis
represent the fraction of nuclei with fragmented nucleoli in a well (for full list of identified
nucleolar fragmentation phenotypes see Table S1).

(F) Average number of nucleoli plotted as a function of fragmentation index. Control wells are
shown as yellow circles, while the rest of the wells are colored in grey. The green line
represents piece-wise linear regression model fitted to the data, where a blue dot corresponds
to a break point. The value of the fragmentation index corresponding to a threshold marking
over-fragmented nucleoli is shown as a dashed line. Red circles depict wells containing over-

fragmented nucleoli.
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Figure S2. Supporting graphs for nucleolar size quantification.

(A) Regression analysis for nucleolar area and number of cells in the well for the essential

collection. Non-linear regression model (green line) fitted to the aggregated wild-type data. The

control wells are shown as grey squares. The aggregated values used to construct the

regression model are represented as yellow circles.

(B) The regression model fitted to the whole essential collection. The regression line is shown in

grey. The grey squares mark WT control wells, whereas the rest of the wells in the collection are

plotted as blue circles. The white squares correspond to the boundary control wells used to

discriminate between wells containing over- or under-sized nucleoli and wild-type controls.
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Figure S3. The rDNA promoter proteome.

(A) Schematic overview of the affinity purification of TALO8-minichromosomes.
Minichromosomes containing the 35S rDNA promoter region and LacO repeats are captured by
Flag-Lacl affinity purification.

(B) Table of previously identified and unidentified (asterisks) Pol | transcriptional regulators. Hits
found in the TALO8-rDNA purification are highlighted bold.

(C) Functional GO term analysis of the identified 35S rRNA promoter-associated proteome upon
TALQOS purification.

(D) Localization GO term analysis of the identified 35S rRNA promoter-associated proteome

upon TALOS purification.
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Figure S4. Examples of protein complexes that scored in the SGA screen.

(A) Validation of the qRT-PCR strategy to quantify differences in 35S rRNA abundance. Bars
represent the means £ SD of 5 independent biological replicates. ***P<0.001.

(B) Examples of molecular complexes not implicated in transcriptional regulation identified in the
SGA screen (red: increase in nucleolar size, blue: decrease in nucleolar size, grey: genes which

have not been screened, asterisks denote proteins identified in the TALOS8 purification).
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Figure S5. A genome-wide RNAI screen for nucleolar size defects in Drosophila cell culture.
Schematic overview of the RNAI screening strategy (Note: right panel shows a close up of the

computer-based segregation of objects of the stained KC cells).
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Figure S6. Comparative GO term analysis between the S. cerevisiae SGA and the D.
melanogaster RNAI screens.
Heatmap displaying the natural log transformed p-values for the respective GO terms (D.m.: D.

melanogaster, S.c.: S. cerevisiae, decrease (-) or increase (+) in nucleolar size).
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Figure S7. Altered nucleolar size upon loss of ribosomal function in D. melanogaster and S.
cerevisiae.

(A) Complex map of the large ribosomal subunit in D. melanogaster (round nodes) and S.
cerevisiae (rectangular nodes) with the respective nucleolar size phenotypes color coded (red:
increase in nucleolar size, blue: decrease in nucleolar size, grey: genes which have not been
screened or for which no homolog exists in the respective species, blue lines denote protein-
protein interaction data, grey lines connect homologous genes).



(B) Increase of 35S rRNA abundance upon loss of ribosomal subunits in D. melanogaster and
S. cerevisiae measured by gRT-PCR. Bars represent the means + SD of 5 independent
biological replicates. ***P<0.001; **P<0.01
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Figure S8. The Drosophila FACT complex is required for cell growth.

(A) Complete data set of the experiment shown in Fig. 5C assaying nucleolar size upon ssrp

RNAI using two independent non-overlapping RNAI constructs. Bars represent the means + SD

of 5 or more independent biological replicates. ***P<0.001; **P<0.01

(B) Complete data set of the experiment shown in Fig. 5E quantifying tumor growth based on

luciferase expression using independent, non-overlapping RNAI lines targeting nopp140, dm,

ssrp and sptl6. Bars represent the means = SD of 4 independent biological replicates.

***P<0.001; **P<0.01
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Figure S9. The HIR complex double-mutant hirlAhir2A shows increased Pol | occupancy over
the 35S rDNA region.

ChIP gPCR analysis of TAP-tagged Pol | subunits Rpa43 (A) and Rpal35 (B) at the 35S rDNA
region and the ACT1 control region was performed. Values are normalized relative to a non-
transcribed region (NTR) and the fold enrichment of wild-type from the 5’ region of the rDNA
locus was set to 1. Bars represent the means + SD of 3 independent biological replicates.

***P<0.001; NS, not significant
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Figure S10. Growth measurements of HIR complex mutants.

(A) Cell cycle distribution determined by flow cytometry. N=10 or more independent biological
replicates.

(B) Cell size distribution in mid-log phase. N=10 or more independent biological replicates.

(D) Colony growth experiment in the presence and absence of rapamycin. Tenfold serial
dilutions of the indicated yeast strains were spotted on YPD plates with or without rapamycin
(75 nM) and imaged after incubation for two days at 30C. In contrast to the transcription
silencing mutant sir3A, used as positive control, HIR complex mutants do not show increased
growth in the presence of rapamycin in comparison to wild-type. Images are representative of 3

independent biological replicates.



